Homework 3: Solutions to exercises not appearing in
Pressley, also 2.2.1, 2.2.3, 2.2.5, 2.2.8, 2.2.9

Math 120A

e (2.1.4) Let y(t) = (sect,secttant,0) on 5~ <t < 7. Then

4(t) = (secttant,sect tan®t 4 sec® ¢, 0)
5(t) = (secttan®t + sec® t,sect tan®t + 2sec® t tant + 3sec® ttant, 0)
= sect(tan®t + sec? t,tan® t + 5sec’ t tant, 0)
To see where the curvature vanishes, it suffices to determine for what values of ¢
A(t) x q'/(t) = 0. This vector is (0,0, A), with A as follows:
= sec® t((tan?t + sec® t)? — tant(tan®t + 5sec’ t tan” t))
= sec’ t(tan® t + 2tan®tsec® t + sec* t — tan*t — 5sec? t tan® )
ec’ t(sec* t — 3tan®tsec’t)
ec’ t(sec’ t — 3tan®t)
((se(:2 t —tan®t) — 2tan®¢)
41(1 — 2tan®t)

4

Since sect is nonzero on 5* < t < 7, the curvature can only be zero when 1 = 2tan?t,

2
or at t = £ arctan <i) = + arcsin (i

e (2.2.3) Let M(x) = @Qx + a be an isometry of the plane. Then if v(s) is a unit-
speed curve, let I = M o~. Now I'(s) = Q%(s) and T'(s) = Q%(s). Therefore
since multiplication by @ is length-preserving (see the problem below on isometries),
II0(s)|| = ||Q%(s)||, and the two curves have the same curvature. If Q is a rotation,
it’s clear Ny = @ng, so the signed curvatures of I' and v agree. If @ is a reflection
across the y-axis, Ny, = —@ng, so the signed curvatures of I" and ~ are opposite. Since
every isometry of the plane is a composition of rotation, reflection across the y-axis,
and translation, we are done.

For the converse, if v and ¥ have the same nonzero curvature functions, either their
signed curvatures are the same, in which case they are related by a direct isometry (as
proved in class), or they differ by a factor of —1. In the second case we can reflect
~ across the y-axis and obtain a curve with the same signed curvature as 7 which is
related by direct isometry to 7. Ergo v and 7 are related by opposite isometry.

e (2.2.1) Recall that t L ny, and t = keng. Sot-n, = 0. Differentiating this relationship
gives
t-n,+t-n,=0
kKsng-ng+t-ng =0

t-n, = —x,



Because that ng is a unit vector, ny 1 n,, so n, is colinear with t. We conclude that
n, = —k,t.
(2.2.5) We have «(t) regular and v*(¢) = y(t) + An,(t). We see that
dng
dt
dng ds
=|[¥@®)|It = A ===
()l — A S
= 7@t = Arst[[3(@)]]
= (1= Any)|[¥(D)]]t.
We conclude that whenever kA # 1, ¥*(t) is regular with % = |1 — k:A|||7(t)]]. Now

we can discuss curvature. The unit tangent vector t* = % = =+t according to

) =4(t) + A

>

whether 1 — Ay is positive or negative. That means n; = +n, with the same sign.
Now we differentiate t* with respect to its arclength s*, obtaining

dt*  dt* ds
ds*  ds ds*
dt 1
S B
ds |1 — Ak
" 1
= +rn—
11— Ak
Ks
— " (+n,
T o 0)

Since £n, is the signed unit normal of 4*(¢), we conclude that the signed curvature is
o

(2.2.8) We have ¢(s) = y(s) + (¢ — s)¥(s), and ks # 0. Now

i(s) = (s) = ¥(s) + (£ = s)7(s)
= (€= 5)3(s)
= (€ — s)ksng
Therefore if v is the arclength parameter for the involute, we see that % = ({ — s)Ks.
Moreover, the unit tangent vector of the involute is ng, which after rotation implies

that the signed unit normal is —t. Ergo to find the signed curvature of ¢, we should
differentiate n, with respect to v, as follows.

dn, _dnsﬁ
dv  ds dv
1
= —gt———
" (0 — s)kKq
1
= —t
7t

Ergo the signed curvature of the involute is ﬁ.



e (2.29) We have y(t) = (t,cosht). To find its involute, the first thing to do is
reparametrize with respect to the arc length. We see that 4(t) = (1,sinht), so the

arclength is
t
s = / \/1 4 sinh®(u)du
0
t
= / cosh udu
0

= sinht

Ergo the arclength reparametrization is v(s) = (sinh™*(s),v/1 + s2). Therefore the
involute is

(smh s), m> _ s (\/821+ . \/Sj+ 1)

(smh ! >
V§+1¢ +1
sinh u 1
(u coshu’ cosh u)

= (u — tanh u, sech u)

Here the second-to-last step makes the substitution « = sinh™' s to simplify the equa-
tions. Now we have r = u—tanh u and y = sech u. Therefore from the second equation,

u = cosh™* (i), so z = cosh™! (i) — /1 — 42, since 1 — sech? u = tanh®u

Question 3: Isometries. (a) Suppose M(0) = 0 and M(e;) = e; for any i. Then for
any v € R", ||[M(v) — 0]]> = ||v — 0]|?, implying that M(v) - M(v) = vv. Moreover,
[|M(v) — el||2 = ||v — ¢;||>. Expanding this equation we see
M(v)-M(v)—2M(v)-e;+e -e,=v-v—2v-e +e- e
M(v) -M(v)—2M(v)-e,=v-v—2v-¢g
M(v)-e=v-¢

This shows that the ith coordinates of v and v are the same for all i, so M(v) = v.

(b) If M(0) = 0 and M (e;) = v;, then ||v; — 0|] = ||e; — 0]|, so v; is a unit vector.
Moreover, we expand as in the previous part, obtaining
[Ivi = vilI* = lle; — ]I
V,--Vi—2vi-vj—|—vj-vj:ei-ei—Qei-ej+ej-ej
2 — 2Vz’ . Vj =2
vi-v; =0

Therefore the v; form an orthonormal system. However, we certainly know of an isome-
try that takes each e; to v;, namely multiplication by the matrix () whose ith column is



v;. (To see this is an isometry, observe that it preserves all lengths: if ¢ = (¢q,- -+, ¢,),
then ||Qc||? = (c1vi + -+ cov) - (Vi + -+ cuvy) =3+ ---c—n? = ||c|]2.) We
observe that Q' o M is an isometry fixing 0 and each e;. By part (a), this means
Q! o M is the identity map, implying that M is just multiplication by Q.

(c) Now let M be an arbitrary isometry. Let a = M(0). Then let N = T_, 0 M, so
that IV is an isometry with N(0) = 0. By part (b), N is equal to multiplication by
an orthogonal matrix (). Then since N = @x, we see that M = T, o N is given by
M(z) = Qx4+ a. We have already seen in part (b) that multiplication by an orthogo-
nal matrix is distance-preserving, and translation clearly also is, so the converse follows.

(d) Suppose that @ is an orthogonal matrix in R?, where Q is

a c

b d -
Since QQ' = I, we see that a> +b?> =1, ¢> +d*> = 1, and ad — bc = 0. We can always
find # such that a = cosf and b = sinf. Then our remaining choices are ¢ = —sin#,
d = cos 0, which gives a rotation counterclockwise by 6, and ¢ = sinf, d = cos 8, which

gives a reflection across the y-axis followed by a rotation counterclockwise by 6, or
equivalently a reflection through the line 6 = 7.



