Homework 3: Solutions to exercises not appearing in Pressley, also 2.2.1, 2.2.3, 2.2.5, 2.2.8, 2.2.9

Math 120A

• (2.1.4) Let $\gamma(t) = (\sec t, \sec t \tan t, 0)$ on $\frac{-\pi}{2} < t < \frac{\pi}{2}$. Then $\dot{\gamma}(t) = (\sec t \tan t, \sec t \tan^2 t + \sec^3 t, 0)$ $\ddot{\gamma}(t) = (\sec t \tan^2 t + \sec^3 t, \sec t \tan^3 t + 2\sec^3 t \tan t + 3\sec^3 t \tan t, 0)$ $= \sec t(\tan^2 t + \sec^2 t, \tan^3 t + 5\sec^2 t \tan t, 0)$

To see where the curvature vanishes, it suffices to determine for what values of $t \ddot{\gamma}(t) \times \dot{\gamma}(t) = 0$. This vector is $(0, 0, \lambda)$, with λ as follows:

$$\begin{aligned} \lambda &= \sec^2 t ((\tan^2 t + \sec^2 t)^2 - \tan t (\tan^3 t + 5 \sec^2 t \tan^2 t)) \\ &= \sec^2 t (\tan^4 t + 2 \tan^2 t \sec^2 t + \sec^4 t - \tan^4 t - 5 \sec^2 t \tan^2 t) \\ &= \sec^2 t (\sec^4 t - 3 \tan^2 t \sec^2 t) \\ &= \sec^4 t (\sec^2 t - 3 \tan^2 t) \\ &= \sec^4 ((\sec^2 t - 3 \tan^2 t) - 2 \tan^2 t) \\ &= \sec^4 t (1 - 2 \tan^2 t) \end{aligned}$$

Since sec t is nonzero on $\frac{-\pi}{2} < t < \frac{\pi}{2}$, the curvature can only be zero when $1 = 2 \tan^2 t$, or at $t = \pm \arctan\left(\frac{1}{\sqrt{2}}\right) = \pm \arcsin\left(\frac{1}{\sqrt{3}}\right)$.

• (2.2.3) Let $M(\mathbf{x}) = Q\mathbf{x} + \mathbf{a}$ be an isometry of the plane. Then if $\gamma(s)$ is a unitspeed curve, let $\Gamma = M \circ \gamma$. Now $\dot{\Gamma}(s) = Q\dot{\gamma}(s)$ and $\ddot{\Gamma}(s) = Q\ddot{\gamma}(s)$. Therefore since multiplication by Q is length-preserving (see the problem below on isometries), $||\ddot{\Gamma}(s)|| = ||Q\ddot{\gamma}(s)||$, and the two curves have the same curvature. If Q is a rotation, it's clear $\mathbf{N}_s = Q\mathbf{n}_s$, so the signed curvatures of Γ and γ agree. If Q is a reflection across the y-axis, $\mathbf{N}_s = -Q\mathbf{n}_s$, so the signed curvatures of Γ and γ are opposite. Since every isometry of the plane is a composition of rotation, reflection across the y-axis, and translation, we are done.

For the converse, if γ and $\tilde{\gamma}$ have the same nonzero curvature functions, either their signed curvatures are the same, in which case they are related by a direct isometry (as proved in class), or they differ by a factor of -1. In the second case we can reflect γ across the *y*-axis and obtain a curve with the same signed curvature as $\tilde{\gamma}$ which is related by direct isometry to $\tilde{\gamma}$. Ergo γ and $\tilde{\gamma}$ are related by opposite isometry.

• (2.2.1) Recall that $\mathbf{t} \perp \mathbf{n}_s$, and $\mathbf{t} = \kappa_s \mathbf{n}_s$. So $\mathbf{t} \cdot \mathbf{n}_s = 0$. Differentiating this relationship gives

$$\dot{\mathbf{t}} \cdot \mathbf{n}_s + \mathbf{t} \cdot \dot{\mathbf{n}}_s = 0$$

$$\kappa_s \mathbf{n}_s \cdot \mathbf{n}_s + \mathbf{t} \cdot \mathbf{n}_s = 0$$

$$\mathbf{t} \cdot \mathbf{n}_s = -\kappa_s$$

Because that \mathbf{n}_s is a unit vector, $\mathbf{n}_s \perp \dot{\mathbf{n}}_s$, so \mathbf{n}_s is collinear with \mathbf{t} . We conclude that $\mathbf{n}_s = -\kappa_s \mathbf{t}$.

• (2.2.5) We have $\gamma(t)$ regular and $\gamma^{\lambda}(t) = \gamma(t) + \lambda \mathbf{n}_s(t)$. We see that

$$\begin{split} \dot{\gamma}^{\lambda}(t) &= \dot{\gamma}(t) + \lambda \frac{d\mathbf{n}_s}{dt} \\ &= ||\dot{\gamma}(t)||\mathbf{t} - \lambda \frac{d\mathbf{n}_s}{ds} \frac{ds}{dt} \\ &= ||\dot{\gamma}(t)||\mathbf{t} - \lambda \kappa_s \mathbf{t}||\dot{\gamma}(t)|| \\ &= (1 - \lambda \kappa_s)||\dot{\gamma}(t)||\mathbf{t}. \end{split}$$

We conclude that whenever $\kappa_s \lambda \neq 1$, $\gamma^{\lambda}(t)$ is regular with $\frac{ds^{\lambda}}{dt} = |1 - \kappa_s \lambda| ||\dot{\gamma}(t)||$. Now we can discuss curvature. The unit tangent vector $\mathbf{t}^{\lambda} = \frac{\dot{\gamma}^{\lambda}(t)}{||\dot{\gamma}^{\lambda}(t)||} = \pm \mathbf{t}$ according to whether $1 - \lambda \kappa_s$ is positive or negative. That means $\mathbf{n}_s^{\lambda} = \pm \mathbf{n}_s$ with the same sign. Now we differentiate \mathbf{t}^{λ} with respect to its arclength s^{λ} , obtaining

$$egin{aligned} rac{d\mathbf{t}^{\lambda}}{ds^{\lambda}} &= rac{d\mathbf{t}^{\lambda}}{ds}rac{ds}{ds^{\lambda}} \ &= \pm rac{d\mathbf{t}}{ds}rac{1}{|1-\lambda\kappa_s|} \ &= \pm\kappa_s\mathbf{n}_srac{1}{|1-\lambda\kappa_s|} \ &= rac{\kappa_s}{|1-\lambda\kappa_s|}(\pm\mathbf{n}_s) \end{aligned}$$

Since $\pm \mathbf{n}_s$ is the signed unit normal of $\gamma^{\lambda}(t)$, we conclude that the signed curvature is $\frac{\kappa_s}{|1-\lambda\kappa_s|}$.

• (2.2.8) We have $\iota(s) = \gamma(s) + (\ell - s)\dot{\gamma}(s)$, and $\kappa_s \neq 0$. Now

$$\begin{split} \dot{\iota}(s) &= \dot{\gamma}(s) - \dot{\gamma}(s) + (\ell - s)\ddot{\gamma}(s) \\ &= (\ell - s)\ddot{\gamma}(s) \\ &= (\ell - s)\kappa_s \mathbf{n}_s \end{split}$$

Therefore if v is the arclength parameter for the involute, we see that $\frac{dv}{ds} = (\ell - s)\kappa_s$. Moreover, the unit tangent vector of the involute is \mathbf{n}_s , which after rotation implies that the signed unit normal is $-\mathbf{t}$. Ergo to find the signed curvature of ι , we should differentiate \mathbf{n}_s with respect to \mathbf{v} , as follows.

$$\begin{aligned} \frac{d\mathbf{n}_s}{dv} &= \frac{d\mathbf{n}_s}{ds} \frac{ds}{dv} \\ &= -\kappa_s \mathbf{t} \frac{1}{(\ell - s)\kappa_s} \\ &= \frac{1}{\ell - s} (-\mathbf{t}) \end{aligned}$$

Ergo the signed curvature of the involute is $\frac{1}{\ell-s}$.

• (2.2.9) We have $\gamma(t) = (t, \cosh t)$. To find its involute, the first thing to do is reparametrize with respect to the arc length. We see that $\dot{\gamma}(t) = (1, \sinh t)$, so the arclength is

$$s = \int_0^t \sqrt{1 + \sinh^2(u)} du$$
$$= \int_0^t \cosh u du$$
$$= \sinh t$$

Ergo the arclength reparametrization is $\gamma(s) = (\sinh^{-1}(s), \sqrt{1+s^2})$. Therefore the involute is

$$\iota(s) = \left(\sinh^{-1}(s), \sqrt{1+s^2}\right) - s\left(\frac{1}{\sqrt{s^2+1}}, \frac{s^2}{\sqrt{s^2+1}}\right)$$
$$= \left(\sinh^{-1}(s) - \frac{s}{\sqrt{s^2+1}}, \frac{1}{\sqrt{s^2+1}}\right)$$
$$= \left(u - \frac{\sinh u}{\cosh u}, \frac{1}{\cosh u}\right)$$
$$= (u - \tanh u, \operatorname{sech} u)$$

Here the second-to-last step makes the substitution $u = \sinh^{-1} s$ to simplify the equations. Now we have $x = u - \tanh u$ and $y = \operatorname{sech} u$. Therefore from the second equation, $u = \cosh^{-1}\left(\frac{1}{y}\right)$, so $x = \cosh^{-1}\left(\frac{1}{y}\right) - \sqrt{1 - y^2}$, since $1 - \operatorname{sech}^2 u = \tanh^2 u$.

• Question 3: Isometries. (a) Suppose $M(\mathbf{0}) = \mathbf{0}$ and $M(\mathbf{e}_i) = \mathbf{e}_i$ for any i. Then for any $\mathbf{v} \in \mathbb{R}^n$, $||M(\mathbf{v}) - 0||^2 = ||\mathbf{v} - 0||^2$, implying that $M(\mathbf{v}) \cdot M(\mathbf{v}) = \mathbf{v}\dot{\mathbf{v}}$. Moreover, $||M(\mathbf{v}) - e_i||^2 = ||\mathbf{v} - e_i||^2$. Expanding this equation we see

$$M(\mathbf{v}) \cdot M(\mathbf{v}) - 2M(\mathbf{v}) \cdot \mathbf{e}_i + \mathbf{e}_i \cdot \mathbf{e}_i = \mathbf{v} \cdot \mathbf{v} - 2\mathbf{v} \cdot \mathbf{e}_i + \mathbf{e}_i \cdot \mathbf{e}_i$$
$$M(\mathbf{v}) \cdot M(\mathbf{v}) - 2M(\mathbf{v}) \cdot \mathbf{e}_i = \mathbf{v} \cdot \mathbf{v} - 2\mathbf{v} \cdot \mathbf{e}_i$$
$$M(\mathbf{v}) \cdot \mathbf{e}_i = \mathbf{v} \cdot \mathbf{e}_i$$

This shows that the *i*th coordinates of **v** and **v** are the same for all *i*, so $M(\mathbf{v}) = \mathbf{v}$.

(b) If M(0) = 0 and $M(\mathbf{e}_i) = \mathbf{v}_i$, then $||\mathbf{v}_i - 0|| = ||\mathbf{e}_i - 0||$, so \mathbf{v}_i is a unit vector. Moreover, we expand as in the previous part, obtaining

$$||\mathbf{v}_i - \mathbf{v}_j||^2 = ||\mathbf{e}_i - \mathbf{e}_j||^2$$
$$\mathbf{v}_i \cdot \mathbf{v}_i - 2\mathbf{v}_i \cdot \mathbf{v}_j + \mathbf{v}_j \cdot \mathbf{v}_j = \mathbf{e}_i \cdot \mathbf{e}_i - 2\mathbf{e}_i \cdot \mathbf{e}_j + \mathbf{e}_j \cdot \mathbf{e}_j$$
$$2 - 2\mathbf{v}_i \cdot \mathbf{v}_j = 2$$
$$\mathbf{v}_i \cdot \mathbf{v}_j = 0$$

Therefore the \mathbf{v}_i form an orthonormal system. However, we certainly know of an isometry that takes each \mathbf{e}_i to \mathbf{v}_i , namely multiplication by the matrix Q whose *i*th column is

 \mathbf{v}_i . (To see this is an isometry, observe that it preserves all lengths: if $\mathbf{c} = (c_1, \dots, c_n)$, then $||Q\mathbf{c}||^2 = (c_1\mathbf{v}_1 + \dots + c_n\mathbf{v}_n) \cdot (c_1\mathbf{v}_1 + \dots + c_n\mathbf{v}_n) = c_1^2 + \dots + c_n^2 = ||\mathbf{c}||^2$.) We observe that $Q^{-1} \circ M$ is an isometry fixing **0** and each \mathbf{e}_i . By part (a), this means $Q^{-1} \circ M$ is the identity map, implying that M is just multiplication by \mathbf{Q} .

(c) Now let M be an arbitrary isometry. Let $\mathbf{a} = M(\mathbf{0})$. Then let $N = T_{-\mathbf{a}} \circ M$, so that N is an isometry with $N(\mathbf{0}) = \mathbf{0}$. By part (b), N is equal to multiplication by an orthogonal matrix Q. Then since $N = Q\mathbf{x}$, we see that $M = T_{\mathbf{a}} \circ N$ is given by $M(x) = Q\mathbf{x} + \mathbf{a}$. We have already seen in part (b) that multiplication by an orthogonal matrix is distance-preserving, and translation clearly also is, so the converse follows.

(d) Suppose that Q is an orthogonal matrix in \mathbb{R}^2 , where Q is

$$\left(\begin{array}{cc}a&c\\b&d\end{array}\right).$$

Since $QQ^t = I$, we see that $a^2 + b^2 = 1$, $c^2 + d^2 = 1$, and ad - bc = 0. We can always find θ such that $a = \cos \theta$ and $b = \sin \theta$. Then our remaining choices are $c = -\sin \theta$, $d = \cos \theta$, which gives a rotation counterclockwise by θ , and $c = \sin \theta$, $d = \cos \theta$, which gives a reflection across the *y*-axis followed by a rotation counterclockwise by θ , or equivalently a reflection through the line $\theta = \frac{\pi}{2}$.