
Homework 3: Solutions to exercises not appearing in
Pressley, also 2.2.1, 2.2.3, 2.2.5, 2.2.8, 2.2.9

Math 120A

• (2.1.4) Let γ(t) = (sec t, sec t tan t, 0) on −π
2
< t < π

2
. Then

γ̇(t) = (sec t tan t, sec t tan2 t+ sec3 t, 0)

γ̈(t) = (sec t tan2 t+ sec3 t, sec t tan3 t+ 2 sec3 t tan t+ 3 sec3 t tan t, 0)

= sec t(tan2 t+ sec2 t, tan3 t+ 5 sec2 t tan t, 0)

To see where the curvature vanishes, it suffices to determine for what values of t
γ̈(t)× γ̇(t) = 0. This vector is (0, 0, λ), with λ as follows:

λ = sec2 t((tan2 t+ sec2 t)2 − tan t(tan3 t+ 5 sec2 t tan2 t))

= sec2 t(tan4 t+ 2 tan2 t sec2 t+ sec4 t− tan4 t− 5 sec2 t tan2 t)

= sec2 t(sec4 t− 3 tan2 t sec2 t)

= sec4 t(sec2 t− 3 tan2 t)

= sec4((sec2 t− tan2 t)− 2 tan2 t)

= sec4 t(1− 2 tan2 t)

Since sec t is nonzero on −π
2
< t < π

2
, the curvature can only be zero when 1 = 2 tan2 t,

or at t = ± arctan
(

1√
2

)
= ± arcsin

(
1√
3

)
.

• (2.2.3) Let M(x) = Qx + a be an isometry of the plane. Then if γ(s) is a unit-
speed curve, let Γ = M ◦ γ. Now Γ̇(s) = Qγ̇(s) and Γ̈(s) = Qγ̈(s). Therefore
since multiplication by Q is length-preserving (see the problem below on isometries),
||Γ̈(s)|| = ||Qγ̈(s)||, and the two curves have the same curvature. If Q is a rotation,
it’s clear Ns = Qns, so the signed curvatures of Γ and γ agree. If Q is a reflection
across the y-axis, Ns = −Qns, so the signed curvatures of Γ and γ are opposite. Since
every isometry of the plane is a composition of rotation, reflection across the y-axis,
and translation, we are done.

For the converse, if γ and γ̃ have the same nonzero curvature functions, either their
signed curvatures are the same, in which case they are related by a direct isometry (as
proved in class), or they differ by a factor of −1. In the second case we can reflect
γ across the y-axis and obtain a curve with the same signed curvature as γ̃ which is
related by direct isometry to γ̃. Ergo γ and γ̃ are related by opposite isometry.

• (2.2.1) Recall that t ⊥ ns, and ṫ = κsns. So t ·ns = 0. Differentiating this relationship
gives

ṫ · ns + t · ṅs = 0

κsns · ns + t · ns = 0

t · ns = −κs



Because that ns is a unit vector, ns ⊥ ṅs, so ns is colinear with t. We conclude that
ns = −κst.

• (2.2.5) We have γ(t) regular and γλ(t) = γ(t) + λns(t). We see that

γ̇λ(t) = γ̇(t) + λ
dns
dt

= ||γ̇(t)||t− λdns
ds

ds

dt
= ||γ̇(t)||t− λκst||γ̇(t)||
= (1− λκs)||γ̇(t)||t.

We conclude that whenever κsλ 6= 1, γλ(t) is regular with dsλ

dt
= |1− κsλ|||γ̇(t)||. Now

we can discuss curvature. The unit tangent vector tλ = γ̇λ(t)
||γ̇λ(t)|| = ±t according to

whether 1 − λκs is positive or negative. That means nλs = ±ns with the same sign.
Now we differentiate tλ with respect to its arclength sλ, obtaining

dtλ

dsλ
=
dtλ

ds

ds

dsλ

= ±dt
ds

1

|1− λκs|

= ±κsns
1

|1− λκs|
=

κs
|1− λκs|

(±ns)

Since ±ns is the signed unit normal of γλ(t), we conclude that the signed curvature is
κs

|1−λκs| .

• (2.2.8) We have ι(s) = γ(s) + (`− s)γ̇(s), and κs 6= 0. Now

ι̇(s) = γ̇(s)− γ̇(s) + (`− s)γ̈(s)

= (`− s)γ̈(s)

= (`− s)κsns
Therefore if v is the arclength parameter for the involute, we see that dv

ds
= (`− s)κs.

Moreover, the unit tangent vector of the involute is ns, which after rotation implies
that the signed unit normal is −t. Ergo to find the signed curvature of ι, we should
differentiate ns with respect to v, as follows.

dns
dv

=
dns
ds

ds

dv

= −κst
1

(`− s)κs

=
1

`− s
(−t)

Ergo the signed curvature of the involute is 1
`−s .



• (2.2.9) We have γ(t) = (t, cosh t). To find its involute, the first thing to do is
reparametrize with respect to the arc length. We see that γ̇(t) = (1, sinh t), so the
arclength is

s =

∫ t

0

√
1 + sinh2(u)du

=

∫ t

0

coshudu

= sinh t

Ergo the arclength reparametrization is γ(s) = (sinh−1(s),
√

1 + s2). Therefore the
involute is

ι(s) =
(

sinh−1(s),
√

1 + s2
)
− s

(
1√
s2 + 1

,
s2√
s2 + 1

)
=

(
sinh−1(s)− s√

s2 + 1
,

1√
s2 + 1

)
=

(
u− sinhu

coshu
,

1

coshu

)
= (u− tanhu, sechu)

Here the second-to-last step makes the substitution u = sinh−1 s to simplify the equa-
tions. Now we have x = u−tanhu and y = sechu. Therefore from the second equation,

u = cosh−1
(

1
y

)
, so x = cosh−1

(
1
y

)
−
√

1− y2, since 1− sech2 u = tanh2 u.

• Question 3: Isometries. (a) Suppose M(0) = 0 and M(ei) = ei for any i. Then for
any v ∈ Rn, ||M(v) − 0||2 = ||v − 0||2, implying that M(v) ·M(v) = vv̇. Moreover,
||M(v)− ei||2 = ||v − ei||2. Expanding this equation we see

M(v) ·M(v)− 2M(v) · ei + ei · ei = v · v − 2v · ei + ei · ei
M(v) ·M(v)− 2M(v) · ei = v · v − 2v · ei

M(v) · ei = v · ei

This shows that the ith coordinates of v and v are the same for all i, so M(v) = v.

(b) If M(0) = 0 and M(ei) = vi, then ||vi − 0|| = ||ei − 0||, so vi is a unit vector.
Moreover, we expand as in the previous part, obtaining

||vi − vj||2 = ||ei − ej||2

vi · vi − 2vi · vj + vj · vj = ei · ei − 2ei · ej + ej · ej
2− 2vi · vj = 2

vi · vj = 0

Therefore the vi form an orthonormal system. However, we certainly know of an isome-
try that takes each ei to vi, namely multiplication by the matrix Q whose ith column is



vi. (To see this is an isometry, observe that it preserves all lengths: if c = (c1, · · · , cn),
then ||Qc||2 = (c1v1 + · · · + cnvn) · (c1v1 + · · · + cnvn) = c21 + · · · c− n2 = ||c||2.) We
observe that Q−1 ◦M is an isometry fixing 0 and each ei. By part (a), this means
Q−1 ◦M is the identity map, implying that M is just multiplication by Q.

(c) Now let M be an arbitrary isometry. Let a = M(0). Then let N = T−a ◦M , so
that N is an isometry with N(0) = 0. By part (b), N is equal to multiplication by
an orthogonal matrix Q. Then since N = Qx, we see that M = Ta ◦ N is given by
M(x) = Qx + a. We have already seen in part (b) that multiplication by an orthogo-
nal matrix is distance-preserving, and translation clearly also is, so the converse follows.

(d) Suppose that Q is an orthogonal matrix in R2, where Q is(
a c
b d

)
.

Since QQt = I, we see that a2 + b2 = 1, c2 + d2 = 1, and ad− bc = 0. We can always
find θ such that a = cos θ and b = sin θ. Then our remaining choices are c = − sin θ,
d = cos θ, which gives a rotation counterclockwise by θ, and c = sin θ, d = cos θ, which
gives a reflection across the y-axis followed by a rotation counterclockwise by θ, or
equivalently a reflection through the line θ = π

2
.


