Homework 3: Solutions to exercises not appearing in Pressley, also 2.2.1, 2.2.3, 2.2.5, 2.2.8, 2.2.9

- (2.1.4) Let $\gamma(t)=(\sec t, \sec t \tan t, 0)$ on $\frac{-\pi}{2}<t<\frac{\pi}{2}$. Then

$$
\begin{aligned}
\dot{\gamma}(t) & =\left(\sec t \tan t, \sec t \tan ^{2} t+\sec ^{3} t, 0\right) \\
\ddot{\gamma}(t) & =\left(\sec t \tan ^{2} t+\sec ^{3} t, \sec t \tan ^{3} t+2 \sec ^{3} t \tan t+3 \sec ^{3} t \tan t, 0\right) \\
& =\sec t\left(\tan ^{2} t+\sec ^{2} t, \tan ^{3} t+5 \sec ^{2} t \tan t, 0\right)
\end{aligned}
$$

To see where the curvature vanishes, it suffices to determine for what values of t $\ddot{\gamma}(t) \times \dot{\gamma}(t)=0$. This vector is $(0,0, \lambda)$, with λ as follows:

$$
\begin{aligned}
\lambda & =\sec ^{2} t\left(\left(\tan ^{2} t+\sec ^{2} t\right)^{2}-\tan t\left(\tan ^{3} t+5 \sec ^{2} t \tan ^{2} t\right)\right) \\
& =\sec ^{2} t\left(\tan ^{4} t+2 \tan ^{2} t \sec ^{2} t+\sec ^{4} t-\tan ^{4} t-5 \sec ^{2} t \tan ^{2} t\right) \\
& =\sec ^{2} t\left(\sec ^{4} t-3 \tan ^{2} t \sec ^{2} t\right) \\
& =\sec ^{4} t\left(\sec ^{2} t-3 \tan ^{2} t\right) \\
& =\sec ^{4}\left(\left(\sec ^{2} t-\tan ^{2} t\right)-2 \tan ^{2} t\right) \\
& =\sec ^{4} t\left(1-2 \tan ^{2} t\right)
\end{aligned}
$$

Since $\sec t$ is nonzero on $\frac{-\pi}{2}<t<\frac{\pi}{2}$, the curvature can only be zero when $1=2 \tan ^{2} t$, or at $t= \pm \arctan \left(\frac{1}{\sqrt{2}}\right)= \pm \arcsin \left(\frac{1}{\sqrt{3}}\right)$.

- (2.2.3) Let $M(\mathbf{x})=Q \mathbf{x}+\mathbf{a}$ be an isometry of the plane. Then if $\gamma(s)$ is a unitspeed curve, let $\Gamma=M \circ \gamma$. Now $\dot{\Gamma}(s)=Q \dot{\gamma}(s)$ and $\ddot{\Gamma}(s)=Q \ddot{\gamma}(s)$. Therefore since multiplication by Q is length-preserving (see the problem below on isometries), $\|\ddot{\Gamma}(s)\|=\|Q \ddot{\gamma}(s)\|$, and the two curves have the same curvature. If Q is a rotation, it's clear $\mathbf{N}_{s}=Q \mathbf{n}_{s}$, so the signed curvatures of Γ and γ agree. If Q is a reflection across the y-axis, $\mathbf{N}_{s}=-Q \mathbf{n}_{s}$, so the signed curvatures of Γ and γ are opposite. Since every isometry of the plane is a composition of rotation, reflection across the y-axis, and translation, we are done.
For the converse, if γ and $\widetilde{\gamma}$ have the same nonzero curvature functions, either their signed curvatures are the same, in which case they are related by a direct isometry (as proved in class), or they differ by a factor of -1 . In the second case we can reflect γ across the y-axis and obtain a curve with the same signed curvature as $\widetilde{\gamma}$ which is related by direct isometry to $\widetilde{\gamma}$. Ergo γ and $\widetilde{\gamma}$ are related by opposite isometry.
- (2.2.1) Recall that $\mathbf{t} \perp \mathbf{n}_{s}$, and $\dot{\mathbf{t}}=\kappa_{s} \mathbf{n}_{s}$. So $\mathbf{t} \cdot \mathbf{n}_{s}=0$. Differentiating this relationship gives

$$
\begin{aligned}
\dot{\mathbf{t}} \cdot \mathbf{n}_{s}+\mathbf{t} \cdot \dot{\mathbf{n}}_{s} & =0 \\
\kappa_{s} \mathbf{n}_{s} \cdot \mathbf{n}_{s}+\mathbf{t} \cdot \mathbf{n}_{s} & =0 \\
\mathbf{t} \cdot \mathbf{n}_{s} & =-\kappa_{s}
\end{aligned}
$$

Because that \mathbf{n}_{s} is a unit vector, $\mathbf{n}_{s} \perp \dot{\mathbf{n}}_{s}$, so \mathbf{n}_{s} is colinear with \mathbf{t}. We conclude that $\mathbf{n}_{s}=-\kappa_{s} \mathbf{t}$.

- (2.2.5) We have $\gamma(t)$ regular and $\gamma^{\lambda}(t)=\gamma(t)+\lambda \mathbf{n}_{s}(t)$. We see that

$$
\begin{aligned}
\dot{\gamma}^{\lambda}(t) & =\dot{\gamma}(t)+\lambda \frac{d \mathbf{n}_{s}}{d t} \\
& =\|\dot{\gamma}(t)\| \mathbf{t}-\lambda \frac{d \mathbf{n}_{s}}{d s} \frac{d s}{d t} \\
& =\|\dot{\gamma}(t)\| \mathbf{t}-\lambda \kappa_{s} \mathbf{t}\|\dot{\gamma}(t)\| \\
& =\left(1-\lambda \kappa_{s}\right)\|\dot{\gamma}(t)\| \mathbf{t}
\end{aligned}
$$

We conclude that whenever $\kappa_{s} \lambda \neq 1, \gamma^{\lambda}(t)$ is regular with $\left.\frac{d s^{\lambda}}{d t}=\left|1-\kappa_{s} \lambda\right| \right\rvert\, \dot{\gamma}(t) \|$. Now we can discuss curvature. The unit tangent vector $\mathbf{t}^{\lambda}=\frac{\dot{\gamma}^{\lambda}(t)}{\left\|\dot{\gamma}^{\lambda}(t)\right\|}= \pm \mathbf{t}$ according to whether $1-\lambda \kappa_{s}$ is positive or negative. That means $\mathbf{n}_{s}^{\lambda}= \pm \mathbf{n}_{s}$ with the same sign. Now we differentiate \mathbf{t}^{λ} with respect to its arclength s^{λ}, obtaining

$$
\begin{aligned}
\frac{d \mathbf{t}^{\lambda}}{d s^{\lambda}} & =\frac{d \mathbf{t}^{\lambda}}{d s} \frac{d s}{d s^{\lambda}} \\
& = \pm \frac{d \mathbf{t}}{d s} \frac{1}{\left|1-\lambda \kappa_{s}\right|} \\
& = \pm \kappa_{s} \mathbf{n}_{s} \frac{1}{\left|1-\lambda \kappa_{s}\right|} \\
& =\frac{\kappa_{s}}{\left|1-\lambda \kappa_{s}\right|}\left(\pm \mathbf{n}_{s}\right)
\end{aligned}
$$

Since $\pm \mathbf{n}_{s}$ is the signed unit normal of $\gamma^{\lambda}(t)$, we conclude that the signed curvature is $\frac{\kappa_{s}}{\left|1-\lambda \kappa_{s}\right|}$.

- (2.2.8) We have $\iota(s)=\gamma(s)+(\ell-s) \dot{\gamma}(s)$, and $\kappa_{s} \neq 0$. Now

$$
\begin{aligned}
i(s) & =\dot{\gamma}(s)-\dot{\gamma}(s)+(\ell-s) \ddot{\gamma}(s) \\
& =(\ell-s) \ddot{\gamma}(s) \\
& =(\ell-s) \kappa_{s} \mathbf{n}_{s}
\end{aligned}
$$

Therefore if v is the arclength parameter for the involute, we see that $\frac{d v}{d s}=(\ell-s) \kappa_{s}$. Moreover, the unit tangent vector of the involute is \mathbf{n}_{s}, which after rotation implies that the signed unit normal is $-\mathbf{t}$. Ergo to find the signed curvature of ι, we should differentiate \mathbf{n}_{s} with respect to \mathbf{v}, as follows.

$$
\begin{aligned}
\frac{d \mathbf{n}_{s}}{d v} & =\frac{d \mathbf{n}_{s}}{d s} \frac{d s}{d v} \\
& =-\kappa_{s} \mathbf{t} \frac{1}{(\ell-s) \kappa_{s}} \\
& =\frac{1}{\ell-s}(-\mathbf{t})
\end{aligned}
$$

Ergo the signed curvature of the involute is $\frac{1}{\ell-s}$.

- (2.2.9) We have $\gamma(t)=(t, \cosh t)$. To find its involute, the first thing to do is reparametrize with respect to the arc length. We see that $\dot{\gamma}(t)=(1, \sinh t)$, so the arclength is

$$
\begin{aligned}
s & =\int_{0}^{t} \sqrt{1+\sinh ^{2}(u)} d u \\
& =\int_{0}^{t} \cosh u d u \\
& =\sinh t
\end{aligned}
$$

Ergo the arclength reparametrization is $\gamma(s)=\left(\sinh ^{-1}(s), \sqrt{1+s^{2}}\right)$. Therefore the involute is

$$
\begin{aligned}
\iota(s) & =\left(\sinh ^{-1}(s), \sqrt{1+s^{2}}\right)-s\left(\frac{1}{\sqrt{s^{2}+1}}, \frac{s^{2}}{\sqrt{s^{2}+1}}\right) \\
& =\left(\sinh ^{-1}(s)-\frac{s}{\sqrt{s^{2}+1}}, \frac{1}{\sqrt{s^{2}+1}}\right) \\
& =\left(u-\frac{\sinh u}{\cosh u}, \frac{1}{\cosh u}\right) \\
& =(u-\tanh u, \operatorname{sech} u)
\end{aligned}
$$

Here the second-to-last step makes the substitution $u=\sinh ^{-1} s$ to simplify the equations. Now we have $x=u-\tanh u$ and $y=\operatorname{sech} u$. Therefore from the second equation, $u=\cosh ^{-1}\left(\frac{1}{y}\right)$, so $x=\cosh ^{-1}\left(\frac{1}{y}\right)-\sqrt{1-y^{2}}$, since $1-\operatorname{sech}^{2} u=\tanh ^{2} u$.

- Question 3: Isometries. (a) Suppose $M(\mathbf{0})=\mathbf{0}$ and $M\left(\mathbf{e}_{i}\right)=\mathbf{e}_{i}$ for any i. Then for any $\mathbf{v} \in \mathbb{R}^{n},\|M(\mathbf{v})-0\|^{2}=\|\mathbf{v}-0\|^{2}$, implying that $M(\mathbf{v}) \cdot M(\mathbf{v})=\mathbf{v} \dot{\mathbf{v}}$. Moreover, $\left\|M(\mathbf{v})-e_{i}\right\|^{2}=\left\|\mathbf{v}-e_{i}\right\|^{2}$. Expanding this equation we see

$$
\begin{aligned}
M(\mathbf{v}) \cdot M(\mathbf{v})-2 M(\mathbf{v}) \cdot \mathbf{e}_{i}+\mathbf{e}_{i} \cdot \mathbf{e}_{i} & =\mathbf{v} \cdot \mathbf{v}-2 \mathbf{v} \cdot \mathbf{e}_{i}+\mathbf{e}_{i} \cdot \mathbf{e}_{i} \\
M(\mathbf{v}) \cdot M(\mathbf{v})-2 M(\mathbf{v}) \cdot \mathbf{e}_{i} & =\mathbf{v} \cdot \mathbf{v}-2 \mathbf{v} \cdot \mathbf{e}_{i} \\
M(\mathbf{v}) \cdot \mathbf{e}_{i} & =\mathbf{v} \cdot \mathbf{e}_{i}
\end{aligned}
$$

This shows that the i th coordinates of \mathbf{v} and \mathbf{v} are the same for all i, so $M(\mathbf{v})=\mathbf{v}$.
(b) If $M(0)=0$ and $M\left(\mathbf{e}_{i}\right)=\mathbf{v}_{i}$, then $\left\|\mathbf{v}_{i}-0\right\|=\left\|\mathbf{e}_{i}-0\right\|$, so \mathbf{v}_{i} is a unit vector. Moreover, we expand as in the previous part, obtaining

$$
\begin{aligned}
\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|^{2} & =\left\|\mathbf{e}_{i}-\mathbf{e}_{j}\right\|^{2} \\
\mathbf{v}_{i} \cdot \mathbf{v}_{\mathbf{i}}-2 \mathbf{v}_{i} \cdot \mathbf{v}_{j}+\mathbf{v}_{j} \cdot \mathbf{v}_{j} & =\mathbf{e}_{i} \cdot \mathbf{e}_{i}-2 \mathbf{e}_{i} \cdot \mathbf{e}_{j}+\mathbf{e}_{j} \cdot \mathbf{e}_{j} \\
2-2 \mathbf{v}_{i} \cdot \mathbf{v}_{j} & =2 \\
\mathbf{v}_{i} \cdot \mathbf{v}_{j} & =0
\end{aligned}
$$

Therefore the \mathbf{v}_{i} form an orthonormal system. However, we certainly know of an isometry that takes each \mathbf{e}_{i} to \mathbf{v}_{i}, namely multiplication by the matrix Q whose i th column is
\mathbf{v}_{i}. (To see this is an isometry, observe that it preserves all lengths: if $\mathbf{c}=\left(c_{1}, \cdots, c_{n}\right)$, then $\|Q \mathbf{c}\|^{2}=\left(c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}\right) \cdot\left(c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}\right)=c_{1}^{2}+\cdots c-n^{2}=\|\mathbf{c}\|^{2}$.) We observe that $Q^{-1} \circ M$ is an isometry fixing $\mathbf{0}$ and each \mathbf{e}_{i}. By part (a), this means $Q^{-1} \circ M$ is the identity map, implying that M is just multiplication by \mathbf{Q}.
(c) Now let M be an arbitrary isometry. Let $\mathbf{a}=M(\mathbf{0})$. Then let $N=T_{-\mathbf{a}} \circ M$, so that N is an isometry with $N(\mathbf{0})=\mathbf{0}$. By part (b), N is equal to multiplication by an orthogonal matrix Q. Then since $N=Q \mathbf{x}$, we see that $M=T_{\mathbf{a}} \circ N$ is given by $M(x)=Q \mathbf{x}+\mathbf{a}$. We have already seen in part (b) that multiplication by an orthogonal matrix is distance-preserving, and translation clearly also is, so the converse follows.
(d) Suppose that Q is an orthogonal matrix in \mathbb{R}^{2}, where Q is

$$
\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) .
$$

Since $Q Q^{t}=I$, we see that $a^{2}+b^{2}=1, c^{2}+d^{2}=1$, and $a d-b c=0$. We can always find θ such that $a=\cos \theta$ and $b=\sin \theta$. Then our remaining choices are $c=-\sin \theta$, $d=\cos \theta$, which gives a rotation counterclockwise by θ, and $c=\sin \theta, d=\cos \theta$, which gives a reflection across the y-axis followed by a rotation counterclockwise by θ, or equivalently a reflection through the line $\theta=\frac{\pi}{2}$.

